Honorary Speaker
Opening Remarks
Professor Baran's research interests lie in the area of solution processable organic/hybrid soft materials for electronic devices. Such soft semiconductor materials possess a viable platform for printed, large area, stretchable and wearable electronics that can be used as solar cells, smart windows, OFETs, thermoelectrics, sensors and bio-electronics.Professor Baran is particularly interested in interface engineering for organic/hybrid solar cells, transparent solar cells for building integrated photovoltaics and stability/degradation studies for long lifetime organic solar cells. She has led projects on i) conjugated polymers for electrochromic devices; ii) non-fullerene acceptors for organic solar cells; iii) multi-component and multi-layered solar cell devices; and iv) understanding the correlation between recombination and nano-morphology in solution processed solar cells. Professor Baran aims to expand the applications of solution processable organic/hybrid semiconductors and to explore their limits in organic/hybrid thermoelectric devices and bio-electronics in the future.
This session is sponsored by Invest Saudi, Saudi Aramco, and Ajlan & Bros Holding
Associate Professor of Material Science and Engineering
Honorary Guests
Professor Baran's research interests lie in the area of solution processable organic/hybrid soft materials for electronic devices. Such soft semiconductor materials possess a viable platform for printed, large area, stretchable and wearable electronics that can be used as solar cells, smart windows, OFETs, thermoelectrics, sensors and bio-electronics.Professor Baran is particularly interested in interface engineering for organic/hybrid solar cells, transparent solar cells for building integrated photovoltaics and stability/degradation studies for long lifetime organic solar cells. She has led projects on i) conjugated polymers for electrochromic devices; ii) non-fullerene acceptors for organic solar cells; iii) multi-component and multi-layered solar cell devices; and iv) understanding the correlation between recombination and nano-morphology in solution processed solar cells. Professor Baran aims to expand the applications of solution processable organic/hybrid semiconductors and to explore their limits in organic/hybrid thermoelectric devices and bio-electronics in the future.
This session is sponsored by Invest Saudi, Saudi Aramco, and Ajlan & Bros Holding
Associate Professor of Material Science and Engineering
External Speakers
Professor Baran's research interests lie in the area of solution processable organic/hybrid soft materials for electronic devices. Such soft semiconductor materials possess a viable platform for printed, large area, stretchable and wearable electronics that can be used as solar cells, smart windows, OFETs, thermoelectrics, sensors and bio-electronics.Professor Baran is particularly interested in interface engineering for organic/hybrid solar cells, transparent solar cells for building integrated photovoltaics and stability/degradation studies for long lifetime organic solar cells. She has led projects on i) conjugated polymers for electrochromic devices; ii) non-fullerene acceptors for organic solar cells; iii) multi-component and multi-layered solar cell devices; and iv) understanding the correlation between recombination and nano-morphology in solution processed solar cells. Professor Baran aims to expand the applications of solution processable organic/hybrid semiconductors and to explore their limits in organic/hybrid thermoelectric devices and bio-electronics in the future.
This session is sponsored by Invest Saudi, Saudi Aramco, and Ajlan & Bros Holding
Associate Professor of Material Science and Engineering
KAUST Speakers
Professor Baran's research interests lie in the area of solution processable organic/hybrid soft materials for electronic devices. Such soft semiconductor materials possess a viable platform for printed, large area, stretchable and wearable electronics that can be used as solar cells, smart windows, OFETs, thermoelectrics, sensors and bio-electronics.Professor Baran is particularly interested in interface engineering for organic/hybrid solar cells, transparent solar cells for building integrated photovoltaics and stability/degradation studies for long lifetime organic solar cells. She has led projects on i) conjugated polymers for electrochromic devices; ii) non-fullerene acceptors for organic solar cells; iii) multi-component and multi-layered solar cell devices; and iv) understanding the correlation between recombination and nano-morphology in solution processed solar cells. Professor Baran aims to expand the applications of solution processable organic/hybrid semiconductors and to explore their limits in organic/hybrid thermoelectric devices and bio-electronics in the future.
This session is sponsored by Invest Saudi, Saudi Aramco, and Ajlan & Bros Holding
Associate Professor of Material Science and Engineering